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Introduction to complex/dusty plasma

e Normal plasma + additional small
sized particles.

e Particles get highly charged and shows
collective behaviors.

e Typical glow discharge argon-dusty
plasma parameters are,

Zin; = Ne + Zyng, Zg= 1049,

mg ~ 1071 kg, m; ~ 10725 kg, ng ~
103cm—3, n; ~ 108cm—3, n,, ~ 1013cm—3
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Motivations;- vortex structures in dusty plasma

e Vortices are observed as a signature of various driven-dissipative systems.
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e The underlying physics requires systematic theoretical interpretations.
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e Therole of E x B, VB x B, Vn; x B, and polarization drift in the vortex
characteristics are to be interpreted systematically.



“Multi-fluid model of complex plasma”
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o These set of equations can be simplified under various approximations.
e Highly mobile electrons and ions are thermalized before the dust
distribution maintains a steady flow.



“2D Hydrodynamic model of bounded dust flow in a plasma”

Manjit Kaur et. a. POP (2015)

V-u = 0, (1)

%ﬂL(u-V)u = —V¢b—v7P+MVZU+f<+f37 2)

fi=—¢u—-—wv) —viu—wy), and fz= ﬂE+ l(ld x B). (3)
mg P

e Usingu = V x 9¢, wp = V x u, and w, ~ 0, the equation in an
axisymmetric cross-section (1,z) of the toroidal setup is follows,

V) = —w, % + (u- V)w = pV2w — (€ 4+ v)w + &ws + Bws.

e Dust dynamic depends on y, &, v, 8, ws, wg, and nature of boundaries.



Calculation of system parameters &, v, i and wg;

0
V2 = —w, a—u;+(u~V)w=uV2w—(§+1/)w+§ws—|—ﬂw§.
e Using conservation of momentum e For kinematic viscosity,
between colliding particles, Re(= Lyug/pn) ~ 1
Mana(Ua—Vj)vaj = —1mn;(Vj—Ua)Vja e M. S. Barnes er al., Phys. Rev.
 myn; - Lett. 68, 313 (1992), S.A. Khra-
Ydj = g i Vid = Naljoja: pak et al., Phys. Rev. E 66, 046414
b (2002).
Further, 2
Ond = TT5, Oig = Anb? , In A, b/ = L Z_e’
m/ 4me ) KgT;

2
o lwy =V x ({vi), &= 47-rminiVi( zé* ) A

mq AmeKpT;

e Therefore, w; is combination of non-zero shear flow fields (V x vj(,)),
(VQa x E), (Vviny x Vny(,y), and others .



Analytical solution in the linear limit (Re < 1) ;-

d
Vi) = —w, a—";+w = uV?w — (€ + v)w + Ews + Burp.

e In the linear regime(Re < 1), the set of equations become,

VA = —w, Vw-—Kw+Kuw =0, Ki=(E+v)/p K=E/v )
oty 20% 3 0% K 20° )0y
W+?W_[<5+KI) 0z? ]8r2+{<ﬁ_7)+r922] ar

3 K 2 o ot
_|:F__+< +Kl>ﬁ_ﬁ]¢'_KZwS:0' 5)

e Solved Numerically using MATLAB solvers such as ode45, pdepe, bvp4c.
o Solved Analytically using Fourier series expansion, Eigenvalue method.

Y =Pz Yr = io: AmJn (OémLL) , Yer = Z binJn (Oém ) Z an COS an
m=1 T

% Laishram, Sharma, and Kaw, Phys. Rev. E 91, 063110 (2015).



Eigenvalue formulation in cylindrical coordinate ;

@ The above-combined equation is reduced to a simple Eigenvalue
problem as given below.

Z(Amam — Kobim)Jn <O¢mLL) =0, (6)

m=1 "

The set of equations for M — modes can be rearranged in a more familiar form,

A]] A]g e A]M a) Bl
A21 A22 e A2M ap Bz
. . . = . )
Avn Am2 ... Amm am By
M
where, Aj=\Ju(jri/Ly), and Bi = KoY bia(ajri/Ly).

=1

@ Using proper boundary conditions (1, = 0, u = ?), the above equations are
solved for coefficients a;. Then solve for v, and finally we get ¢ = ¥, (r)¢.(2).



Flow solutions and effect of boundary conditions;

Vi) = —w, Viw - Kiw + Kws = 0. (Re < 1) 8)

@ Let the background sheared
ions follow natural Bessel
mode as follows,

r
Vo (r,z) = Uu+U0]0(amf).
r

0 05 1 4 0 1
r L] ur(ro, 2)[Uok 108

@ No-slip boundary u = 0.0, introduces boundary layer formation.
@ u,; < 1.0 cm/sec, while the acoustic velocity(~ Up) = 12.65 cm/sec.



“Nonlinear effects in the bounded dust vortex flow in plasma”

Manjit Kaur et. al. POP (2015)

Figure: Dust vortex in Experimental
lab(PR), by M. Kaur et. al.
Phys. of Plasma 22, 033703 (2015).
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Vi = —w, o+ (U V)w = pV2w — (€ + v)w + Ews + B,
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% Laishram, Sharma, Prabal, and Kaw, Phys. Rev. E 95, 033204 (2017).



Dust flow solution in non-linear regime Re > 1 ;-

e The above dust dynamical formulation is extended to higher Reynolds
number nonlinear flow regimes (Re > 1) .

Vi +w =0,
Viw — Klw+K2ws—i(u~V)w =0. (Re>1)

¢ Using SOR-Iterations method, the above set of equations are solved using
proper boundary conditions (u; =0, i =?).

A
A—Iifj2 ~ Ry =V +w
d)nJrl 1[)”+AL2V21[)H+ALZLU",
Similarly, "' =W" + AL*V*W" — ALKw" + ......

e This numerical formulation is benchmarked with well-known fluid flow
problems and previous analytical solutions in the linear regime ( Re < 1).

% Laishram and Zhu, Physics of Plasma 25, 103701 (2018).
% Laishram, Sharma, and Kaw, AIP Conf. Proc. 1925 (2018).



Nonlinear characteristics in domain of L, /L, = 1;

» Manjit Kaur et. a. POP(2015)
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e Uniform vorticity core region sur-
rounded by highly shear layers is the non-
linear characteristic of the flow. s




Nonlinear structural bifurcation and scaling laws ;

Ow
V= —w, ot (W V)w = Vil — (€4 v)w + Ews + S
® Series of vortical structure with varying p as follows,
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=> The critical parameter 1z ~ p* corresponds to degenerate singular point (w; = 0, wj, = 0)

of the flow field at the boundaries that bifurcates into two isolated solutions through the ;.*.

5
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® These scaling laws can estimate the kinematic viscosity of the driven dust flow.
% Laishram, Sharma, Prabal, and Kaw, Phys. Rev. E 95, 033204 (2017).



Nonlinear characteristics in domain of L, /L, = 2 ;

Vi = —w, E+(u-V)w:uvzw—(f—&—u)w—i—fws—i—ﬂe/g.

@ Let the background sheared ions follows higher natural Bessel modes.

.
Vo(r,2) = Ua + Uoo (a,ﬁ), 1=1,2,3, 4.

1t =3¢-05

0.5 ﬁ
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@ Dominant scales are introduced by the driving fields and boundaries.
% Laishram and Zhu, Physics of Plasma 25, 103701 (2018).



Conditions for steady state co-rotating vortices :
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Figure: Steady state co-rotating vortices observed
. in dusty plasma experiments by Mangilal et al, Phys.
” ” ” Plasma 24, 033703 (2017).

e Co-rotating vortices are the outcome of nonlinear structural bifurcation
through a threshold parameter p*.
% Laishram, Sharma, and Zhu, Phys. D; Applied Physics 21, 073703 (2019).



“Bounded dust vortex flow structure in magnetized plasma”
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VY = —w, E—F(H-V)w:uvw—(§+u)w+§ws+ﬁw3.
Here, fw; = V x (€i), fuws = V x [%E +Mﬂ, E = E; + Ea, and Eq =7

% Laishram, https://arxiv.org/abs/2011.03237 (2020).



Derivation of ambipolar field E, =7

e Starting from the flow equation of electrons and ions across the B, we
have,

Vn; Vi +Vjp+ Vjvs
w =+p Bl — D — + L—5 = ©
=B DS )

e Using n;u;, = neu,, and n; = n, + Z;n, in the regime we; > ve, to
Vin > wic, the expression for E, and fwp = V x %Ea are derived as

e _ Nqe (ExB)  KyT.(Vn.xB) n.K,T. VB x B
Ba = naq(D Vi) + 2 oy {” BE g |BP % BF
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e Further, we can simplify for Swp| and Swp, in the driven system.



Vorticity sources along with B i.e., Swp

e In the cross-section xy, we have Eg(—7),
VBj, Bz = Bysin(yy), )y = ky{=%, and

Vi(—y) = Up cos(xx), xx = kxiijél

e The vorticity sources are found to be,

ws =V xv;=—-U

& sin(xx)
Lx — X1 ’

‘ electrode

Buog = — Nefeqa —E; ky "\ cos(yy)
Bl 77m,,l(l +vZ,/wi) |\ Bo Ly, —n smz(yy)
(KT k2 \?/ 1 2cos(
GeBo J\ Ly — n sin(yy)  sind(yy

e In Swp, the last term (due to VB) is six orders larger than the second term
(due to V2B) and three orders larger than the first term (due to Es x B).

And,




Driven dust vortex characteristics;

Vi = —w, o +(u Viw= uViw — (€ + v)w + Ews + Bws.

e The equations are solved in the rectangular domain 0 < x/L, < 1,
0<y/L,<1,and L;/L, = 1 for a wide range of 11 (or v, &, and f3).

1
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e w, generates a volumetrically driven anti-clockwise circular structure.
ewp | gives rise to clockwise D-shaped elliptical structure which turns into a
meridional structure with varying parameters.



Dust vortex structure at high pressure and low B;

Ow
ot

e When both the w; and wp| are comparable, a counter-rotating vortex pairs
associated with different sources can co-exist in the same domain.

Vi = —w, +(u-V)w = uViw — (€ + v)w + Ews + Bws.

Maniilal et al. POPT2
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e When the B is reversed, both the sources act together and generate a
strong meridional structure. The interior static point, u(xy, o) = 0 follows,

VP
:—V¢+ Ea——+qu+§v+uw
mgy

e In all the above analyses, u; < 6.0 cm/ sec and cy4s ~ 12.65 cm/ sec.



Summary and future work

e We have developed a 2D hydrodynamic model for characterizing vortices
in driven-dissipative flow systems in cartesian and cylindrical setup.

Ow

57 @ V)w = uVw — (§ + v)w + &ws + fuos.

V2¢ = —w,

e The dynamical model is extendable for studies of wide ranges of
magnetized dusty plasma such as weak to strong and axial to transverse
magnetized plasma.

e Adding compressibility, the model may describe the formation of plasma
spiral vortex, void-vortex pair, and associated transient phenomena such as
wave, instabilities, and turbulent flows as reported recently.

e The 2D vy — w formulation (V¢ = w) is isomorphic to the 2D drift-
Poisson equations (V¢ = 4men, v = —sVoxZzZ w=Vxv= n%z),
i.e., ¢ <> ¥ and n + w. Further, the incompressible flow field (V - v = 0) is

similar to B patterns (V - B = 0),i.e., v+ By and ¢ < vy .



Important relevant informations ;-

e Working in Generalized Hybrid Kinetic-MHD model for burning plasma.
% M. Laishram, Zhu, and Hou, https://arxiv.org/abs/1911.01741 (2020).

e Working experience in parallel NIMROD hybrid kinetic-fluid code.

e Collaborating in Modeling of dust particles transport in EAST-tokamak
using DTOKS-U transport code and HERMES plasma code.

% Dust Particles Preceding Vertical Displacement Events in EAST,

Luke Simons, Sanjib Sarkar, Rui Ding, M. Laishram, and others(ongoing).

e Several invited talks, oral presentations, research publications, and
awards.
“Asian Under-30 Young Scientist and Student Award-2018”

e Member of APS, EPS, AIP, IOP, PSSI, and AAPPS-DPP.

o For more detailed information, please refer to my CV.

Thank you !
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